Differentiate y=log10(√(x-a)+√(x-b)
y=log10( √x−a+√x−b)
= loge( √x−a+√x−b)⋅ log10e
differentiating both sides with respect to x
dydx=log10e⋅ddxlog(√x−a+√x−b)
=log10e⋅1√x−a+√x−b⋅ddx(√x−a+√x−b)
=log10e⋅1√x−a+√x−b⋅[ddx√x−a+ddx√x−b]
=log10e⋅1√x−a+√x−b⋅[ 12(x−a)1/2−1⋅ddx(x−a)+ 12(x−b)1/2−1⋅ddx(x−b)]
=log10e⋅1√x−a+√x−b⋅12[1√x−a⋅1+1√x−b⋅1]
=log10e2( √x−a+√x−b)[( √x−a+√x−b)√x−a⋅√x−b]
=log10e2√(x−a)(x−b)
Save this image for future reference ⇓⇓⇓
Read Solution for: Limit Solutions
No comments:
Post a Comment