Differentiate y=log10(√(x-a)+√(x-b)

$y=\log_{10}\left( \ \sqrt{x-a} +\sqrt{x-b}\right)$

$=\ \log_{e}\left( \ \sqrt{x-a} +\sqrt{x-b}\right) \cdotp \ \log_{10} e$

differentiating both sides with respect to $x$

$\frac{dy}{dx} =\log_{10} e\cdotp \frac{d}{dx}\log\left(\sqrt{x-a} +\sqrt{x-b}\right)$

$=\log_{10} e\cdotp \frac{1}{\sqrt{x-a} +\sqrt{x-b}} \cdotp \frac{d}{dx}\left(\sqrt{x-a} +\sqrt{x-b}\right)$

$=\log_{10} e\cdotp \frac{1}{\sqrt{x-a} +\sqrt{x-b}} \cdotp \left[\frac{d}{dx}\sqrt{x-a} +\frac{d}{dx}\sqrt{x-b}\right]$

$ =\log_{10} e\cdotp \frac{1}{\sqrt{x-a} +\sqrt{x-b}} \cdotp \left[ \ \frac{1}{2}( x-a)^{1/2-1} \cdotp \frac{d}{dx}( x-a) +\ \frac{1}{2}( x-b)^{1/2-1} \cdotp \frac{d}{dx}( x-b)\right]$

$=\log_{10} e\cdotp \frac{1}{\sqrt{x-a} +\sqrt{x-b}} \cdotp \frac{1}{2}\left[\frac{1}{\sqrt{x-a}} \cdotp 1+\frac{1}{\sqrt{x-b}} \cdotp 1\right]$

$=\frac{\log_{10} e}{2\left( \ \sqrt{x-a} +\sqrt{x-b}\right)}\left[\frac{\left( \ \sqrt{x-a} +\sqrt{x-b}\right)}{\sqrt{x-a} \cdotp \sqrt{x-b}}\right]$

$=\frac{\log_{10} e}{2\sqrt{( x-a)( x-b)}}$


Save this image for future reference $\Downarrow \Downarrow \Downarrow $

differentiate y=log10(sqrt(x-a)+sqrt(x-b)

Read Solution for: Limit Solutions