y=log(x+ √x2−a2 )
Differentiating with respect to x
dydx=ddxlog(x+√x2−a2 )
=1x+√x2−a2 ⋅ ddx(x+ √x2−a2 )
= 1x+√x2−a2 [ ddxx+ ddx(x2−a2)1/2]
=1x+√x2−a2⋅[ 1+ 12(x2−a2)1/2−1⋅ ddx(x2−a2)]
=1x+√x2−a2⋅[1+12√x2−a2⋅2x]
=1x+√x2−a2[1+1√x2−a2]
=1x+√x2−a2[√x2−a2+x√x2−a2]
=1√x2−a2
No comments:
Post a Comment