Differentiate, y=sin4xcos7x
y=sin4x cos7x=12⋅2sin4xcos7x
y=12(sin11x−sin3x)
differentiating with respect to x
dydx=12[ddx(sin11x−sin3x)]
=12[cos11x⋅ddx(11x)−cos3x⋅ddx(3x)]
=12[11cos11x−3cos3x]
We provide materials and solutions to your school and college problems
y=sin4x cos7x=12⋅2sin4xcos7x
y=12(sin11x−sin3x)
differentiating with respect to x
dydx=12[ddx(sin11x−sin3x)]
=12[cos11x⋅ddx(11x)−cos3x⋅ddx(3x)]
=12[11cos11x−3cos3x]
Copyright © 2025
No comments:
Post a Comment