Full Marks: 40
Pass Marks: 18
SAQ 10×3=30
1) a) If x√1+y+y√1+x=0, then dydx=?
OR
b) Let y=(sin−1x)2+(cos−1x)2 ; Show that (1−x2)d2ydx2−xdydx=4
2) Find the derivative of sin−1(2x1+x2) with respect to tan−1(2x1−x2)
3) Find the derivative with respect to x, tan−1(sinx1+cosx)
4) Find dydx
a) x=cos−1(8t4−8t2+1),y=sin−1(3t−4t3)
OR b) y=xsinx+(sinx)cosx
5) a) If y=1+sinθ+cosθ1+sinθ−cosθ, show that, dydx+11−cosθ=0
OR b) If tany=tanx+secx−1tanx−secx+1, Show that, dydx=12
6) Prove
a) ∫cosx−cos2x1−cosxdx=x+2sinx+c
OR b)∫cosx⋅cos2x⋅cos3xdx
=14(x+sin2x2+sin4x4+sin6x6)+c
7) Evaluate
a) ∫cosx+xsinxx(x+cosx)dx
OR b) ∫dxcosx+sinx
8) Evaluate
a) ∫ecos−1x1+x2
OR b) ∫dx(1+x2)√tan−1x+4
9) Integrate
a) ∫cosxdx√6+11sinx−10sin2x
OR
b) ∫dx(1+x)√1+x−x2
10) Integrate ∫xdx(1+x2)(1+x)
VSQ 5×2=10
1) Differentiate (any 2)
a) ex9 b) log(cotx) c) (√logx)3
2) Integrate (Any 3)
a) ∫dx√ax+b, b) ∫dx16−25x2, c) ∫logxdx, d) ∫cos5xdx
also read: Chemistry Test-(i)
No comments:
Post a Comment