Full Marks: 40
Pass Marks: 18

 SAQ 10×3=30

1) a) If x1+y+y1+x=0, then dydx=?
OR
b) Let y=(sin1x)2+(cos1x)2 ; Show that (1x2)d2ydx2xdydx=4

2) Find the derivative of sin1(2x1+x2) with respect to tan1(2x1x2)

3) Find the derivative with respect to x, tan1(sinx1+cosx)

4) Find dydx
a) x=cos1(8t48t2+1),y=sin1(3t4t3)
OR b) y=xsinx+(sinx)cosx

5) a) If y=1+sinθ+cosθ1+sinθcosθ, show that, dydx+11cosθ=0
OR b) If tany=tanx+secx1tanxsecx+1, Show that, dydx=12

6) Prove
a) cosxcos2x1cosxdx=x+2sinx+c
OR b)cosxcos2xcos3xdx
        =14(x+sin2x2+sin4x4+sin6x6)+c

7) Evaluate
a) cosx+xsinxx(x+cosx)dx
OR b) dxcosx+sinx

8) Evaluate
a) ecos1x1+x2
OR b) dx(1+x2)tan1x+4

9) Integrate
a) cosxdx6+11sinx10sin2x
OR
b) dx(1+x)1+xx2

10) Integrate xdx(1+x2)(1+x)

VSQ 5×2=10
1) Differentiate (any 2)
a) ex9 b) log(cotx) c) (logx)3

2) Integrate (Any 3)
a) dxax+b,  b) dx1625x2,  c) logxdx,  d) cos5xdx


also read: Chemistry Test-(i)