1. Prove that $lim_{x\rightarrow \infty} \frac{ae^x + be^{-x}}{ce^x+de^{-x}}=\frac{a}{c} \quad [2<e<3, c \neq 0 ] $
Solution:
$lim_{x\rightarrow \infty} \frac{ae^x + be^{-x}}{ce^x+d e^{-x}} $
$=lim_{x\rightarrow \infty} \frac{a + be^{-2x}}{c+d e^{-2x}} $
$=\frac{a + be^{-\infty}}{c+d e^{\infty}}$
$=\frac{a}{c} $ Proved
2. Prove that $lim_{x\rightarrow - \infty} \frac{ae^x + be^{-x}}{ce^x+de^{-x}}=\frac{b}{d} \quad [2<e<3, d \neq 0 ] $
Solution:
$lim_{x\rightarrow - \infty} \frac{ae^x + be^{-x}}{ce^x+de^{-x}}$
$=lim_{x\rightarrow - \infty} \frac{ae^{2x} + b}{ce^{2x}+d}$
$\frac{ae^{-\infty} + b}{ce^{-\infty}+d}$
$=\frac{b}{d}$ Proved
4. Prove that $lim_{x\rightarrow 1} \frac{4^x-4}{x-1}=8log_e 2 $
Solution:
$lim_{x\rightarrow 1} \frac{4^x-4}{x-1}$
$= 4lim_{x-1 \rightarrow 0 } \frac{4(4^{x-1}-1)}{x-1}$
$=4 lim_{x-1 \rightarrow 0 } \frac{(4^{x-1}-1)}{x-1} $
$=4 log_e 4$
$=8log_e 2$ Proved
5. Prove that $lim_{x\rightarrow 2} \frac{log(2x-3)}{2(x-2)}=1$
Solution;
$lim_{x\rightarrow 2} \frac{log(2x-3)}{2(x-2)}$
$=lim_{2x\rightarrow 4} \frac{log(2x-4+1)}{2x-4})$
$=lim_{2x-4\rightarrow 0} \frac{log(2x-4+1)}{2x-4)}$
$=1$ Proved
6. Show that $lim_{x\rightarrow 0} ( 1+2x)^{\frac{1}{x}}=e^2$
Solution:
$lim_{x\rightarrow 0} ( 1+2x)^{\frac{1}{x}}$
$=lim_{x\rightarrow 0} ( 1+2x)^{\frac{1 \cdot 2}{ 2x}} $
$= \left[ lim_{x\rightarrow 0} ( 1+2x)^{\frac{1}{ 2x}} \right] ^2$
$=e^2$ proved [Since $lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e $]
7. Show that $lim_{x\rightarrow 0} (1-3x)^ \frac{3}{x}= e^{-9}$]
Solution:
$lim_{x\rightarrow 0} (1-3x)^ \frac{3}{x}$
$=lim_{x\rightarrow 0} (1-3x)^{-\frac{1}{3x} \cdot ( -9)}$
$=\left[ lim_{-3x\rightarrow 0} (1-3x)^{- \frac{1}{3x}} \right] ^{-9} $
$=e^{-9}$ Proved [Since $lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e $]
8. Show that $lim_{x\rightarrow 1}x^{\frac{1}{1-x}}=e^{-1}$
Solution:
$lim_{x\rightarrow 1}x^{\frac{1}{1-x}}$
$=lim_{x\rightarrow 1}(1+x-1)^{\frac{1}{1-x} \cdot (_1)}$
$= \left[ lim_{x-1 \rightarrow 0}(1+x-1)^{\frac{1}{1-x}} \right] ^{-1}$
$=e^{-1}$ Proved [Since $lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e $]
9. Show That $lim_{x\rightarrow 0}(1+x)^{\frac{x+2}{x}}=e^{8}$
Solution:
$lim_{x\rightarrow 0}(1+x)^{\frac{x+2}{x}}$
$=lim_{x\rightarrow 0}(1+x)^{\frac{1}{4x} \cdot (4x+8)} $
$= { \left[ lim_{4x \rightarrow 0}(1+x)^{\frac{1}{4x}} \right] } ^{ lim_{x\rightarrow 0}(4x+8)} $
$=e^{8}$ Proved [Since $lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e $]
No comments:
Post a Comment