Find the derivative with respect to $x$
(1) $ y=\sin\sqrt{x^{2} +a^{2}}$
let $y=\sin u$
$\frac{dy}{du} =\cos u$
and $ u=\sqrt{v} \ \ \frac{du}{dv} =\frac{1}{2\sqrt{v}}$
$v=x^{2} +a^{2} \ \ \frac{dv}{dx} =2x$
$\frac{dy}{dx} =\frac{dy}{du} \ \cdotp \frac{du}{dv} \cdotp \frac{dv}{dx}$
$=\cos u\cdotp \frac{1}{2\sqrt{v}} \cdotp 2x$
$=\frac{x\cos\sqrt{x^{2} +a^{2}}}{\sqrt{x^{2} +a^{2}}}$ Ans
(2) $y=\log_{2}\left(\sin x^{3}\right)$
$=\log_{e}\left(\sin x^{3}\right) \times \log_{2} e$
let $ y=\log_{e} u\times \log_{2} e$
$\frac{dy}{du} =\log_{2} e\cdotp \frac{1}{u}$
$u=\sin v\ \ \ \ \ \frac{du}{dv} =cosv$
$v=x^{3} \ \ \ \ \frac{dv}{dx} =3x^{2}$
$\frac{dy}{dx} =\frac{dy}{du} \cdotp \ \frac{du}{dv} \cdotp \frac{dv}{dx}$
$=\log_{2} e\cdotp \frac{1}{u} \cdotp cosv\cdotp 3x^{2}$
$=3x^{2}\cot\left( x^{3}\right)\log_{2} e$ Ans
(3) $y=e^{\sqrt{cosx}}$
let, $ y=e^{u} \ \ \ \therefore y=e^{u} \ \ $
$\frac{dy}{du} =e^{u} \ $
$u=\sqrt{v} \ \ \ \ \frac{du}{dv} =\frac{1}{2\sqrt{v}}$
$v=\cos x\ \ \ \frac{dv}{dx} =-\sin x$
$\frac{dy}{dx} =\frac{dy}{du} \cdotp \ \frac{du}{dv} \cdotp \frac{dv}{dx}$
$=e^{u} \ \cdotp \frac{1}{2\sqrt{v}} \cdotp ( -\sin x)$
$=-\frac{e^{\sqrt{cosx}}\sin x}{2\sqrt{\cos x}}$ Ans
(4) $y=\frac{1}{\sqrt{\log(\sec x)}}$
let, $ y=\frac{1}{u} \ \ \ \ \ \frac{dy}{du} =-\frac{1}{u^{2}}$
$u=\sqrt{v} \ \ \ \ \ \ \ \frac{du}{dv} =\frac{1}{2\sqrt{v}}$
$v=\log(\sec x) \ \ \ \ \ \frac{dv}{dx} =\tan x$
$\frac{dy}{dx} =\frac{dy}{du} \cdotp \ \frac{du}{dv} \cdotp \frac{dv}{dx}$
$=-\frac{1}{u^{2}} \cdotp \frac{1}{2\sqrt{v}} \cdotp \tan x$
$=-\frac{\tan x}{2\log(\sec x)\sqrt{\log(\sec x)} \ }$
$=-\frac{1}{2}\tan x[\log(\sec x)]^{3/2} $ Ans
(5) $ y=\cos^{-1}\sqrt{2x-3}$
let $ y=\cos^{-1} u\ \ \ \ \ \ \frac{dy}{du} =-\frac{1}{\sqrt{1-u^{2}}}$
$ u=\sqrt{v} \ \ \ \ \ \ \frac{du}{dv} =\frac{1}{2\sqrt{v}}$
$v=2x-3\ \ \ \frac{dv}{dx} =2$
$\frac{dy}{dx} =\frac{dy}{du} \cdotp \ \frac{du}{dv} \cdotp \frac{dv}{dx}$
$=-\frac{1}{\sqrt{1-u^{2}}} \cdotp \frac{1}{2\sqrt{v}} \cdotp 2$
$=\frac{1}{\sqrt{1-2x+3}} \cdotp \frac{1}{\sqrt{2x-3}}$
$=-\frac{1}{\sqrt{4-2x}\sqrt{2x-3}}$
$=-\frac{1}{\sqrt{2}} \cdotp \frac{1}{\sqrt{2-x}\sqrt{2x-3}}$ Ans
(6) $y=x{^{x}}^{2} +a{^{x}}^{2}$
let, $ y=u+v\ \ \ \ \frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=x{^{x}}^{2}$
$\log u=x^{2}\log x$
$\frac{1}{u}\frac{du}{dx} =2x\log x+x$
$\frac{du}{dx} =x{^{x}}^{2}[ 2x\log x+x]$
$v=a{^{x}}^{2}$
$\frac{dv}{dx} =2xa{^{x}}^{2}\log_{e} a$
$\therefore \frac{dy}{dx} =x{^{x}}^{2}[ 2x\log x+x] +2xa{^{x}}^{2}\log_{e} a$ Ans
(7) $y=(\sin x)^{\cos x} +e^{3x}$
let, $ \ \ y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=(\sin x)^{\cos x}$
$\log u=\cos x\log\sin x$
$\frac{1}{u}\frac{du}{dx} =-\sin x\log(\sin x) +\cos x\cdotp \cot x$
$\frac{du}{dx} =(\sin x)^{\cos x}[\cos x\cdotp \cot x-\sin x\log(\sin x)]$
$\frac{dv}{dx} =3e^{3x}$
$\therefore \frac{dy}{dx} =(\sin x)^{\cos x}[\cos x\cdotp \cot x-\sin x\log(\sin x)] +3e^{3x}$ Ans
(8) $y=x^{x} +(\sin x)^{x}$
let, $ y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=x^{x}$
$\log u=x\log x$
$\frac{1}{u}\frac{du}{dx} =\log x+1$
$\frac{du}{dx} =x^{x}[\log x+1]$
$v=(\sin x)^{x}$
$\log v=x\log(\sin x)$
$\frac{1}{v}\frac{dv}{dx} =\log(\sin x) +x\cot x$
$\frac{dv}{dx} =(\sin x)^{x}[\log(\sin x) +x\cot x]$
$\therefore \frac{dy}{dx} =x^{x}[\log x+1] +(\sin x)^{x}[\log(\sin x) +x\cot x]$ Ans
(9) $y=(\tan x)^{\cot x} +(\cot x)^{\tan x}$
let $y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=(\tan x)^{\cot x}$
$\log u=\cot x\log(\tan x)$
$\Longrightarrow \frac{1}{u} \cdotp \frac{du}{dx} =-\mathrm{cosec}^{2} x\log(\tan x) +\frac{\sec^{2} x}{\tan^{2} x}$
$=(\tan x)^{\cot x}\left[ -\mathrm{cosec}^{2} x\log(\tan x) +\frac{\sec^{2} x}{\tan^{2} x}\right]$
$v=(\cot x)^{\tan x}$
$\log v=\tan x\log(\cot x)$
$\Longrightarrow \frac{1}{v} \cdotp \frac{dv}{dx} =\sec^{2} x\log(\cot x) -\frac{\mathrm{cosec} ^{2} x}{\cot^{2} x}$
$\frac{dv}{dx} =(\cot x)^{\tan x}\left[\sec^{2} x\log(\cot x) -\frac{\mathrm{cosec}^{2} x}{\cot^{2} x}\right]$
$\therefore \frac{dy}{dx} =(\tan x)^{\cot x}\left[ -\mathrm{cosec}^{2} x\log(\tan x) +\frac{\sec^{2} x}{\tan^{2} x}\right] $
$+(\cot x)^{\tan x}\left[\sec^{2} x\log(\cot x) -\frac{\mathrm{cosec}^{2} x}{\cot^{2} x}\right]$ Ans
(10) $y=(\sin x)^{\cos x} +(\cos x)^{\sin x}$
let $y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=(\sin x)^{\cos x}$
$\log u=\cos x\log(\sin x)$
$\Longrightarrow \frac{1}{u} \cdotp \frac{du}{dx} =-\sin x\log(\sin x) +\cos x\cot x$
$\frac{du}{dx} =(\sin x)^{\cos x}[ -\sin x\log(\sin x) +\cos x\cot x]$
$v=(\cos x)^{\sin x}$
$\log v=\sin x\log(\cos x)$
$\Longrightarrow \frac{1}{v} \cdotp \frac{dv}{dx} =\cos x\log(\cos x) -\sec x\tan x$
$\frac{dv}{dx} =(\cos x)^{\sin x}[\cos x\log(\cos x) -\sec x\tan x]$
$\therefore \frac{dy}{dx} =(\sin x)^{\cos x}[ -\sin x\log(\sin x) +\cos x\cot x] $
$+(\cos x)^{\sin x}[\cos x\log(\cos x) -\sec x\tan x]$ Ans
(11) $y=e^{\cos^{-1} x} +x^{\sqrt{x}}$
let $y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=e^{\cos^{-1} x}$
$\Longrightarrow \frac{du}{dx} =-\frac{e^{\cos^{-1} x}}{\sqrt{1-x^{2}}}$
$v=x^{\sqrt{x}}$
$\log v=\sqrt{x} \cdotp \log x$
$\Longrightarrow \frac{1}{v} \cdotp \frac{dv}{dx} =\frac{1}{2\sqrt{x}} \cdotp \log x+\frac{1}{\sqrt{x}}$
$\frac{dv}{dx} =x^{\sqrt{x}}\left[\frac{1}{2\sqrt{x}} \cdotp \log x+\frac{1}{\sqrt{x}}\right]$
$\therefore \frac{dy}{dx} =-\frac{e^{\cos^{-1} x}}{\sqrt{1-x^{2}}} $
$+x^{\sqrt{x}}\left[\frac{1}{2\sqrt{x}} \cdotp \log x+\frac{1}{\sqrt{x}}\right]$ Ans
(12) $ y=(\sin x)^{\tan x} +(\cos x)^{\sec x}$
let $y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=(\sin x)^{\tan x}$
$\log u=\tan x\log(\sin x)$
$\Rightarrow \frac{1}{u} \cdotp \frac{du}{dx} =\sec^{2} x\log(\sin x) +1$
$\frac{du}{dx} =(\sin x)^{\tan x}\left[\sec^{2} x\log(\sin x) +1\right]$
$v=(\cos x)^{\sec x}$
$\log v=\sec x\log(\cos x)$
$\Rightarrow \frac{1}{v} \cdotp \frac{dv}{dx} =\sec x\tan x\log(\cos x) -\sec x\tan x$
$\frac{dv}{dx} =(\cos x)^{\sec x}[\sec x\tan x\log(\cos x) -\sec x\tan x]$
$\therefore \frac{dy}{dx} =(\sin x)^{\tan x}\left[\sec^{2} x\log(\sin x) +1\right] $
$+(\cos x)^{\sec x}[\sec x\tan x\log(\cos x) -\sec x\tan x]$ Ans
(13) $y=x^{\sin x} +(\sin x)^{\cos x}$
let $ y=u+v$
$\frac{dy}{dx} =\frac{du}{dx} +\frac{dv}{dx}$
$u=x^{\sin x}$
$\log u=\sin x\log x$
$\Rightarrow \frac{1}{u} \cdotp \frac{du}{dx} =\cos x\log x+\frac{\sin x}{x}$
$\frac{du}{dx} =x^{\sin x}\left[\cos x\log x+\frac{\sin x}{x}\right]$
$v=(\sin x)^{\cos x}$
$\log v=\cos x\log(\sin x)$
$\Longrightarrow \frac{1}{v} \cdotp \frac{dv}{dx} =-\sin x\log(\sin x) +\cos x\cot x$
$\frac{dv}{dx} =(\sin x)^{\cos x}[ -\sin x\log(\sin x) +\cos x\cot x]$
$\therefore \frac{dy}{dx} =x^{\sin x}\left[\cos x\log x+\frac{\sin x}{x}\right] $
$+(\sin x)^{\cos x}[ -\sin x\log(\sin x) +\cos x\cot x]$ Ans
No comments:
Post a Comment