Let the point $P$ be at the distance $r$ from the centre of dipole on the side of the charge $q$, then
Here $\displaystyle E_{-q} =\frac{kq}{( r+a)^{2}}$ and $\displaystyle E_{+q} =\frac{kq}{( r- a)^{2}}$
So the total electric field at pont $\displaystyle P$ is
$\displaystyle E=E_{+q} -E_{-q}$ $\displaystyle \ ( E_{+q} >E_{-q})$
$\displaystyle E=kq\left[\frac{kq}{( r- a)^{2}} -\frac{kq}{( r+a)^{2}}\right]$
$\displaystyle E=kq\cdotp \frac{4ar}{\left( r^{2} -a^{2}\right)^{2}}$
For $\displaystyle ( r\ggg a)$ $\displaystyle E=\frac{4kqa}{r^{3}}$ $\displaystyle \vec{E} =\frac{2k\vec{P}}{r^{3}}$
The direction of $\displaystyle \vec{E}$ is along $\displaystyle \vec{P}$ i.e from $\displaystyle -q$ to $\displaystyle +q$
#$\displaystyle E\varpropto \ \frac{1}{r^{3}}$
No comments:
Post a Comment